Articles from the World of Aviation

Avionica, L2 Secure AML-STC for MiniQAR Installs




April 11, 2018 | by Matt Thurber


The FAA has granted an approved model list (AML) STC for installation of Avionica’s miniQAR (quick-access recorder) and 4G cellular transmission module on Part 23 turboprops and jets.
The combination of Avionica’s miniQAR MkIII and avCM 4G Cellular Module enables operators to transmit flight data while on the ground and connected to a local cellular network, anywhere in the world. The avCM can also facilitate in-flight entertainment system and electronic flight bag updates, and operational datalink communications. The miniQAR can store up to 3,000 hours of flight data.
The AML-STC covers popular airplanes such as Part 23 Cessna Citations and the Beechcraft King Air series, HondaJet, Phenom 100 and 300, Pilatus PC-12, and more.
L2 did the engineering design and project management and Avionica, in collaboration with L2, obtained certification for the miniQAR and avCM system.
“There is growing need for data solutions in all classes of aircraft, and the popular Avionica miniQAR and avCM Cellular Module will make for safer operations and may enable FOQA programs for Part 23 aircraft with newly available data,” said L2 Aviation vice president of operations Dean Rudolph.


Avionica Extends thier avWiFi STC for e-Enablement Connectivity



June 19, 2017 | by Matt Thurber | Paris, France |

Kalitta Air is the first airline customer to implement Avionica’s newly amended supplemental type certificate (STC) for the avWiFi router, allowing the air-line’s flight crew members to use wireless applications—such as electronic flight bags (EFBs)—in all phases of flight. Kalitta Air is also using the avWiFi router for on-the-ground, dual-path Internet access, which provides low-cost broadband data transfer when the aircraft is not flying, as well as for terminal wireless connectivity for automated data downloads. Avionica (Hall 3 DE19) is celebrating its 25th year in business.


The amended STC covers a variety of airframes under an approved model list, including Boeing 777, 767, 737, DC-10, MD-10, and MD11 series and Bombardier DHC-8-200 series. Avionica partnered with Air Greenland to develop the DHC-8-200 STC.


The avWiFi router is available with up to one terabyte of solid-state storage, and it is equipped with two 10/100-Mbit Ethernet ports with an 802.11a/b/g/n access point. The router supports distribution and loading of software parts and EFB operations, including updating “IFE systems, electronic flight bags, onboard maintenance terminals (such as Avionica’s RSU II OnBoard), and other Ethernet-enabled mass-storage systems,” the company said. Other features include automatic download of Ethernet-enabled quick-access records, and the ability to be combined with Avionica’s avRDC (remote data concentrator), which allows the avWiFi to deliver real-time flight data to onboard EFBs and in-flight entertainment systems.


For aircraft without a data loader or an older data loader, the avWiFI combined with Avionica’s avRDC provides wireless 615-4 and 615A data loading. This eliminates the hassle of maintaining stacks of floppy discs and distributing them to each aircraft. Operators can also develop their own applications that can access avWiFi-based features and services.


For aircraft equipped with Avionica’s Iridium-based sat-Link Max satcom, avWiFi allows the use of multiple VoIP cabin handsets to make and receive satellite voice calls.


“This is another important step toward e-enablement and EFB connectivity,” said Anthony Rios, vice president of sales for Avionica. “It builds on our long history in terminal wireless that began in 2003 with our secure-Link. We appreciate Kalitta’s support and assistance in this development project that now allows Avionica to provide our customers with Gatelink services on a large array of aircraft.”


Avionica also announced e-enablement equipment selections by: Cathay Pacific, for its Cathay Pacific and Cathay Dragon Boeing/Airbus fleet; Icelandair, for 16 new Boeing 737 Maxs; Korean Airlines; and FlyDubai.


Cathay Pacific is Introducing Enhanced e-enablement on its Fleet


March 2017 | |

Downloading maintenance data has become a big issue in recent years, driven by a number of factors: new-generation aircraft like the Airbus A350 and Boeing 787 are being delivered with e-enablement; the number of aircraft with connectivity is rapidly increasing (although mainly for passenger and cabin crew use); still providing a potential outlet for more technical data; and the greater awareness in the aviation industry of the use of big data has sparked interest in predictive maintenance to prevent failures and avoid AOGs.


When Cathay Pacific began to look for its second generation, e-enabled, airborne global connectivity programme, a benefit of the Avionica proposal was that it would take responsibility for the technology, hardware, software, and would provide support services for certification – the previous project involved five suppliers. In addition, the company offered small lightweight equipment, modularity and scalability.


Avionica’s solution for Cathay Pacific consists of four modules.


avCM 4G cellular device
The avCM 4G Wireless GSE Module includes a seven-band HSPA+ 4G Cell Module that transfers data on demand with worldwide coverage. The 4G transfer speed is up to 21mbps for upload and up to 5.76mbps for download. That means one hour of flight data can be downloaded in 30 seconds. The unit is easy to install, measuring 5.6cm x 2.4cm x 4.7cm and weighing 71g. This can be achieved with a universal installation kit, or with ARINC 404, or ARINC 600 tray adapters.



avSYNC is a secure, web-hosted Software as a Service (SaaS) that is hosted by Avionica on scalable, redundant servers in hardened server farms. Data is conveyed directly to and from aviONS and avRDC MAX (see below) over secure, encrypted Virtual Private Network tunnels, and transferred to or from any location with internet access. This is the bypass for the expensive ground segment, offering upload and download for a fixed cost per megabyte.


The aviONS Onboard Network Server is the interface between the other components of the system, working via ARINC data links and a local Ethernet. It measures 18cm x 10.3cm x 6.6cm and weighs 1.36kg.


satLINK MAX provides up to four channels of Iridium satellite-based voice and data. It consists of two LRU modules. The data concentrator (avRDCMAX) is installed in the avionics bay, adjacent to the Communications Management Unit (CMU), Multifunction Control Display Unit (MCDU) and audio panel. The Iridium radio module (satLINK MAX) is installed in the fuselage crown area, adjacent to the antenna, minimising RF losses. The two devices are attached by a single Ethernet and power cable. This reduces the overall weight of the installation whilst maximising performance.


No additional controls, handsets, or displays are required as satLINK MAX integrates directly into the aircraft’s existing audio panel and is a plug-in replacement for the ARINC 741/761 Satellite Data Unit, providing dialling capability via the aircraft’s existing ARINC 739 MCDU or ACARS Interactive Display Unit (IDU). The same interfaces are used for data messaging, routable over the aircraft’s existing ARINC 724/758 MU/CMU.


Rob Saunders, Head of Engineering Cost Management & Business Improvement & Lean at Cathay Pacific, says the airline has had a clear design goal for its e-enabled solution for some years. This being full-time cost-effective global connectivity for flight and cabin crew operations. With a growing number of polar routes, Iridium was the obvious choice. Whilst the original solution met the design goal, hardware obsolescence risks and increasing certification costs drove a decision to review the project.


The outcome was that the design goal was still valid but cheaper, simplified solutions were becoming available in the market. As a result the Class 3 EFBs in the cockpit and cabin initiated in 2009 have been deactivated in favour of the new simpler, lighter and more cost-effective solution from Avionica. This new solution provides more capability than those of the OEMs that were previously available at that time – at a fraction of the cost. Saunders’ view is that this is an example of where capabilities in what was previously termed ‘Avionics’ are becoming available from domestic technology roots, the iPad being the game changer in this arena. He predicts that the industry will see more companies producing cost-effectivesolutions that challenge the high-cost culture of aviation equipment. IFE will be an interesting market to watch over the next five years.


The current plan calls for the ‘first of type’ of each aircraft in the Cathay Pacific, Cathay Pacific Cargo and Cathay Dragon (formerly Dragonair) fleets (see table, page 50) to be completely modified and certified by May 2018. This will involve the complete Avionica package, including the satcom antenna, the avSYNC QAR download and avCM 4G cellular device. To accelerate business benefits, Cathay plans to install just the avSYNC QAR and avCM 4G on the rest of the fleet as this can be completed during a long layover, around 16 hours. This will upgrade the fleet to a common wireless QAR allowing data to be transmitted automatically whenever the aircraft is on the ground, without the need for an engineer to visit the aircraft and extract the information on media.


More importantly, the Avionica ONS will provide cabin wifi for on synchronisation of the ‘aircraft attached’ e-Cabin and Log book iPads and access to aircraft system data for ‘pilot attached’ EFBs. As Iridium connectivity is added to the system to provide an airborne data path, engineers will meet the aircraft ‘with a part, not a pen’ as they will have a full picture from the eLog before arrival. Saunders adds that the airline now has solid evidence of the benefits of airborne reporting from experience of the e-Log on the A350 fleet, which was e-enabled from birth.


Priority will be given to the long haul fleet, although he notes that some Cathay Dragon destinations in
mainland China have little in the way of technical support so remote connection will allow engineers recovering an aircraft to arrive with the correct parts and equipment.


Fitting the satcom antenna takes three days and breaches the pressure hull, so this work will be mostly planned alongside heavy maintenance visits. These will be carried out by HAECO Xiamen and the HAECO base team in Hong Kong. The simpler work will be done in Hong Kong by HAECO in shorter inputs. The airline has 22 Airbus A350-900s and 26 Airbus A350-1000s on order, with 11 -900s delivered to date. Further in the future, there are 21 Boeing 777-9X on order.


The A350s are fitted with an Airbus e-enabled system that meets the same design goal as Avionica but is not retrofittable. As a general point, Saunders says the newer aircraft such as the A350 and 787 are highly integrated but Cathay’s solution is to install the same software applications to provide data commonality with the rest of the fleet – this includes the Ultramain eTechLog, Arconics AeroDocs, as well as products from Fly Smart, Navtech and Cathay Pacific proprietary software. Another advantage of this installation is that it helps maintain Cross Crew Qualification for pilots and maintainers.


One aspect of airborne connectivity that has to be considered very carefully is the cost of the data itself.  The bandwidth for the operational network is still relatively narrow and expensive. The cost savings of using the information can easily be overtaken by the cost of getting the data in the first place.


Saunders says that it is frustrating to identify an opportunity that is not viable for this reason. Newer aircraft types have significant opportunities but the OEMs need to understand the data cost burden to the operator. Large volumes of engine data being downloaded automatically was not a welcome cost burden to Cathay on the introduction of its 747-8 Freighter fleet, he adds. Anthony Rios, Vice President of Sales at Miami-based Avionica, agrees, commenting that typical charges for the ground segment, not normally considered, are even higher.


One way to greatly reduce the cost would be a link from the operational data path to the cheaper data rates of the passenger connectivity system. Saunders accepts that there are security requirements but points out that data security is technically achievable, and it is only a matter of time before the industry addresses the factual issues rather that the anecdotal risk claims. Taking this into context, the level of data encryption requirements to downlink a cabin defect via satcom seem a little onerous when ACARS information providing aircraft position for the world’s fleet remains available to anyone with a downloadable app on a smartphone.


Having the Avionica server on the aircraft has opened up some interesting possibilities. The storage space could be used to hold a master tech log or troubleshoot for cabin problems. The latter is important, he says, and is a big part of the e-enablement programme. If there is a business class seat problem after take off, the cabin crew could take photos, send them to the maintenance control centre and receive advice on a fix, or they could consult the data on the server and perhaps get a video showing the reset procedure viewed on their company-issued personal device. The important point here is that the initial impact to a passenger could be avoided and the activity by the crew captured and downlinked to the next port for rectification on arrival. The reservations system could receive the information in case the seat needs to be blocked for sale on the next flight. Solving the problem in the air and advising that it worked out makes that seat available for sale again. Across the airline’s fleet, this type of process improvement avoids a considerable loss of revenue. This would also apply to aircraft faults if the problem is sent on ahead.


Saunders also suggests that algorithms for various onboard systems could be held in the server with frequent ‘dips’ into the QAR during a flight to see whether they are behaving as they should. This can be used for trending, such as APU fuel burn, or to measure the airflow in the environmental control system to check if filters need to be replaced. He says OEMs tend to have conservative maintenance intervals based on the ‘lowest common denominator’ airline, so more spare filters are held in store than necessary and may be replaced before they really need to be. Regular monitoring could extend the service interval. A more serious example is the case of a potential heavy landing. This requires careful assessment of a number of parameters, including the g-force encountered and aircraft altitude. This data has to be collected and sent to the OEM for analysis while the aircraft is grounded for several hours. Potentially, onboard analysis would provide a quick answer and release the aircraft to service earlier.


Aircraft fleets
Cathay Pacific fleet
Boeing 747-400 3
Boeing 777-200 5
Boeing 777-300 12
Boeing 777-300ER 53
Airbus A330-300 41
Airbus A340-300 4
Airbus A350-900 11
Boeing 747-8F 14
Boeing 747-400ERF 6
Boeing 747-400 BCF* 1
Total 150
Cathay Dragon fleet
Airbus A320 15
Airbus A321 8
Airbus A330-300 20
Total 43
Aircraft on order
Airbus A350-900 12
Airbus A350-1000 26
Boeing 777-9X 21
Total 59

(source: Cathay Pacific) * will not be converted used for trending, such as APU fuel burn, or to measure the airflow in the environmental control system to check if filters need to be replaced. He says OEMs tend to have conservative maintenance intervals based on the ‘lowest common denominator’ airline, so more spare filters are held in store than necessary and may be replaced before they really need to be. Regular monitoring could extend the service interval. A more serious example is the case of a potential heavy landing. This requires careful assessment of a number of parameters, including the g-force encountered and aircraft altitude. This data has to be collected and sent to the OEM for analysis while the aircraft is grounded for several hours. Potentially, onboard analysis would provide a quick answer and release the aircraft to service earlier.

Avionica Integrated Airborne Hardware Supports Cathay Pacific Airways Fleetwide e-enablement



January 17, 2017 | By Courtney E. Howard Chief Editor, Intelligent Aerospace |

MIAMI. Cathay Pacific Airways engineers in Hong Kong sought enabling technologies for the
airline’s second-generation e-enabled system to be deployed across the Cathay Pacific and
Cathay Dragon fleets, including B777, B747, A320, and A330 commercial aircraft. They found
their solution, appointing Avionica in Miami as the integrator and supplier for their e-enabled,
airborne global connectivity program.


Avionica’s e-enablement hardware package provides Cathay Pacific a single, common set of
hardware across Boeing and Airbus fleets. At the same time, Avionica brings expertise in STC
development and installation support for Cathay Pacific’s e-enablement solution, at the
heart of Cathay Pacific’s efficiency enhancing initiatives.


Avionica’s e-Enabled products for Cathay Pacific include aviONS (right) and satLINK MAX. aviONS – an open-platform network supporting airline and third-party software systems – enhances airborne connectivity with global 4G Cellular and WiFi. satLINK MAX is a 4-channel, FANS-1/A and ATC Voice Safety Service approved Iridium SATCOM system.


“Avionica offers Cathay Pacific an integrated airborne hardware solution for e-enablement and full-time global connectivity. As part of the STC integration experience, Avionica’s STC design data package is of among the highest quality that we have seen,” says Rob Saunders, head of engineering business improvement and lean at Cathay Pacific Airways.

This selection marks an important milestone in the development of airline e-enablement as Avionica continues its expansion into Asia’s air transport market with its versatile global voice and data connectivity solutions, officials say.


Avionica’s solution for Cathay Pacific includes:

satLINK MAX Iridium satellite communications system
aviONS Onboard Network Server
avCM 4G cellular device
avSYNC QAR download

satLINK MAX is a 4-channel, Future Air Navigation System (FANS)-1/A, and air traffic control (ATC) Voice Safety Service-approved Iridium satellite communications (SATCOM) system. The multitude of Iridium channels enables Cathay Pacific to maximize e-enabled aircraft connectivity without restricting critical voice and FANS-1/A safety services.

aviONS provides an open-platform network solution supporting airline and third-party e-enablement systems. aviONS enhances airborne connectivity with global 4G cellular and wi-fi connectivity. Cathay Pacific will tap aviONS’ Wi-Fi connectivity for crew wireless applications, including efficient in-flight reporting of cabin discrepancy.

To manage connectivity, Avionica’s avSYNC global data transfer network is available to provide automated data transfer between aircraft and their operation center. As Cathay Pacific’s e-enabled aircraft focus is efficiency, avSYNC’s ability to automate data synchronization of onboard applications would become a key component of its strategy.

“We’re excited to have been selected by Cathay Pacific in deploying the e-Enabled aircraft solution across their fleet of aircraft. We welcome Cathay to the family of customers that entrust their hardware, STC integration, and data management to us,” says Avionica Vice President of Sales Anthony Rios. “Cathay is leading the charge in e-enablement. With this selection, Avionica becomes the lead enabler to achieve that.”

Cathay Pacific Airways is a Hong Kong-based airline offering scheduled passenger and cargo services to nearly 200 destinations in Asia, North America, Australia, Europe, and Africa, using a fleet of more than 140 wide-body aircraft.

Cathay Dragon is a wholly owned subsidiary of Cathay Pacific, and the airline also has a 60 percent stake in AHK Air Hong Kong Ltd, an all-cargo carrier operating regional express freight services. Cathay Pacific has made substantial investments to develop Hong Kong as one of the world’s leading global transportation hubs. The airline is a founder member of the oneworld global alliance.

Headquartered in Miami for 25 years, Avionica is an aircraft data collection and data transmission manufacturer, designing and producing innovative, safety-qualified, state-of-the-art solutions that are revolutionizing air transportation.

For Avionica, It’s All About Big Data


November 1, 2016, 2:00 PM | by Chad Trautvetter |

Avionica’s partnership with mobile data provider GigSky, signed in late August, puts the Miami-based avionics company closer to its goal of becoming a conduit for “big data” to improve aviation safety. Another goal is to extend the service life of business aircraft and their components. Avionica’s customers can thus use the GigSky worldwide 3G/LTE network to automatically upload safety data after every flight from their aircraft’s Avionica miniQAR (quick access recorder) via a 4G module. Together, the two boxes are the about the size of a fist and weigh less than two pounds.


According to Avionica (Booth 3471), customers pay a yearly rate to send data securely over the GigSky cellular network and won’t be charged roaming fees for data transmission while traveling in other countries. “Since datatransfer cost and security are no longer part of the equation, the data can be sent immediately upon reaching a destination, without the need to physically download information from the miniQAR,” Avionica vice president of sale Tony Rios told AIN. “Business jets fly all over the world, and they can get into very costly roaming charges.”


Transmitted data is forwarded to any third parties that customers have chosen. It can be processed, analyzed and turned into useful reports. According to Rios, many operators are already sending data to engine manufacturers, who then combine it with data from other operators—in other words, big data—to analyze. From this, the engine manufacturers can calculate predictive maintenance procedures to allow for full-life use of parts, as opposed to preventive maintenance performed at fixed calendar times, flight hours or cycles.


“With big data, engine OEMs can predict the full life of the part, which means it could be used for a longer period, reducing maintenance costs,” he said. “Another example is the engine vanes for oil distribution. They can get clogged, and the data can indicate this condition. So that allows customers to then be notified to do an engine wash—at the right time—to extend the life of the engine.”


The data can also be transmitted to companies such as Baldwin Aviation or GE Aviation for corporate flight operations quality assurance (C-FOQA)/flight data management (FDM) to improve aviation safety. NBAA has been championing for C-FOQA for several years, Rios pointed out.


“C-FOQA feeds so perfectly into safety management systems,” said NBAA vice president of safety, security and regulation Doug Carr. “It can be very important as a data point for an SMS, a needed element of feedback. Managers can see if SOPs are being adhered to, and use the information for training and education.”


Avionica’s miniature quick-access recorder has been installed on more than 8,000 aircraft, including most business jet types. It also supplies the avRDC data concentrator on the Gulfstream G650. This device samples data from a variety of data buses and concentrates the output into a formatted data stream on an Ethernet channel after processing the data according to specific Gulfstream dictated algorithms. The 1.1-pound box can also serve as an airborne dataloader, router and wireless airborne server.


The company also offers FANS 1/A+ retrofit solutions using the SatLink Max air traffic service safety-voice-certified Iridium satcom system.

Destination Driven

Avionica builds foundation for connectivity future


Raul Segredo discovered at an early age three guiding principles essential to creating an aerospace business in the highly competitive connectivity niche: Put the customer first; put yourself in the customer’s seat; teach your employees to fly.


Segredo, co-founder, president and CEO of Miami-based Avionica, has incorporated that wisdom into the DNA of his company, which builds ground support equipment, data recorders and connectivity systems for the global aviation industry. The 25-year-old privately held business has 60 employees servicing more than 750 customers globally and is growing at about 15% per year on revenues of about $15 million a year. Customers include United Airlines, FedEx, UPS, Delta Air Lines, FlyDubai, Emirates, Gol, China Airlines and Malaysia Airlines.

That growth is based not only on the relevance of legacy products—largely ground support equipment and recorders— but the increasing need for ubiquitous connectivity on the flight deck as a fundamental aircraft capability. The company’s latest product line features both “gatelink” capabilities— connecting the cockpit to the airline at the gate to take advantage of low-cost broadband data transfer through Wi-Fi and 4G—and satellite connections, data and voice, over the Iridium constellation.


The confluence of Segredo’s three principles began during his 10-year stint at Gables Engineering, a builder of avionics and controls. He began at age 14 as the kid “sweeping up the floors and tidying the labs.” By the time he turned 16, he was learning to write machine code for the microcontrollers that were just starting to emerge in electronics. “I noticed there were no pilots there,” says Segredo of his coworkers at the time. “[We] built controller panels for cockpits, and none of us knew what they were for.”


Segredo decided to put himself in the customer’s seat, figuratively, earning his private pilot’s license and becoming “very passionate” about flying. “I have an ethic of hiring people that are aviators as well, because pilots are destination-oriented people,” he says of Avionica. Along with subsidizing flight training for employees, the company has on occasion had its own flying club and company aircraft, including a PZL Koliber, a license-built version of the Socata Rallye on which Segredo says about 20 employees learned to fly. While there is currently no company flying club or aircraft, Segredo, who now flies the company’s Cessna Citation 501SP business jet, says he recently brought in an instructor to hold a ground school “to get people back into it.”


He and a fellow graduate of the University of Miami, Stylian Cocalides (now retired), started Avionica in 1992 based on a common-sense idea to help airlines with the required annual readouts of digital flight data recorders (FDR). Carriers either ship the actual recorder to a readout facility or download and send the data. At Avionica, technicians verify that the recorded data meet certain performance thresholds, investigate any exceedances and, for legacy tape-based machines, make sure that certain commands (speed up, slow down) operate correctly. United Airlines, one of the company’s largest readout clients, downloads its recorders and sends the data to Avionica.


When Segredo first looked at the issue, airlines were using disparate tools to read out recorders made by different companies. “What if we took the download software and put it into a regular laptop and changed the cables?” he wondered. “That’s the genesis of our ground support line. We take a generic laptop, plug in the right cable and run the software that will operate any of these FDRs.”


That simple concept introduced in 1993—applying ingenuity and technology to make life better for the customer— served Segredo well as word-ofmouth led to a building-block approach to other opportunities that ultimately expanded the company’s product lines into quick access recorders (QAR) and connectivity equipment.


The company’s start in the QAR business came the late 1990s when Delta Air Lines—which used Avionica for FDR readouts—asked for help with a problem. The industry was in the early stages of a seismic shift in safety culture, moving from forensics (wait for an accident then fix what caused it) to predictive safety, where airlines and the FAA would analyze flight data to root out trends pointing to a potential accident.


Delta needed an easy way to read out the flight performance data, called Flight Operations Quality Assurance (FOQA) data, from the aircraft’s digital flight data acquisition unit, the device that taps into the various data buses and sends information to the FDR box.


“We had been kicking around this concept of a tiny data recorder that would plug into the provisions Boeing already had in the aircraft, just to test the system and see if it would work,” says Segredo. He notes that engineers came up with a variety of prototypes that were round, square or oblong. For the Boeing 737, the device would plug into a connector at the back of the forward closet.


After meetings with the FAA at the aircraft certification office in Atlanta, Segredo was given the green light to treat the device as a thumb drive (not requiring certification) and was allowed to try it on a small number of Delta aircraft for a few months. With the miniature QAR, Delta could download the FOQA data using a laptop plugged into the mini QAR. The test went well, and the FAA allowed Delta to equip its entire 737 fleet with Avionica’s QAR using a “field approval” rather than a formal supplemental type certificate (STC), a move Segredo says spared the company from having to generate a 3-ft.-tall stack of approval documentation.


He says Delta flew the first-generation recorders for three years and 600,000 flight hours with only one failure before upgrading to the secondgeneration version, for which Avionica in 2002 gained an STC (that now covers almost 250 aircraft types in an “approved model list”) and put all the necessary quality controls in place for a production facility. “We have never looked back in the 17 intervening years,” says Segredo. To date, the company has sold about 8,000 mini QARs.


The second-generation mini QAR came about because FedEx wanted more capacity but the same download time, a request that led to a USB port and an Ethernet connection. FedEx later asked for changes that would result in the third-generation mini QAR in 2009, initially with Wi-Fi connectivity and later with 3G and 4G wireless connections over cellular links. Along the way, Avionica built a military version of the mini QAR, which was used for a time by the U.S. Navy to record flight parameters for post-flight playback on Boeing F/A-18 fighter jets based at Patuxent River and Miramar NAS, in Maryland and California, respectively.


While the QAR was evolving, airlines in the mid-2000s were also interested in increasing the usefulness of electronic flight bags (EFB), which were largely being used to hold electronic documents. Miami Air International, a charter operator based in Miami, called on Avionica to connect its EFBs to the external world via satellite, in large part to update charts from anywhere in the world. The resulting “Satlink” product, which connected the aircraft via the Iridium satellite network, took the next step in evolution when Continental Airlines needed communications help for its fleet of 737s in Micronesia.


Because of issues with the legacy communications system—HF—pilots would sometimes have no voice contact to tell controllers in California that they needed to divert around weather. The solution was to use Avionica’s system for voice calls over Iridium. In 2013, Avionica came out with its nextgeneration Iridium satcom (called Satlink Max), which included approval for FANS 1/A capability, meaning aircraft could use the datalink and voice for “safety services” and qualify for lower separation minimums over the ocean. United was the first customer, equipping a Boeing 777. Anthony Rios, Avionica’s vice president of sales, says the company has 850 “classic” satcom systems in service and has sold about 200 Satlink Max systems.


A request by Gulfstream during development of the G650 around 2008 set the path for further evolution of the mini QAR. Rios says the airframer had heard about Avionica’s ability to connect EFBs to aircraft data via Ethernet and wanted to see if the same configuration could be used to sample data from a group of hydraulic filters that otherwise would require a bundle of wires running to the health-monitoring system at the front of the aircraft. “Three months later, we went to Gulfstream to demonstrate the mini QAR on steroids,” says Rios. The beefed-up QAR, with additional inputs, memory and capability, was officially named the remote data concentrator and became a standard component on the G650.


The culmination of recorder and connectivity evolution is housed in Avionica’s Onboard Network Server architecture (AviONS). The smal-footprint electronics package includes a remote data concentrator topped with the Wi- Fi and 4G units and an Ethernet connection to the Satlink Max electronics box in the crown of the aircraft, near the L-band antennas.


While Avionica has come far, it does face challenges,; the latest of which is an ongoing lawsuit with Teledyne Controls. According to court documents, the suit revolves around claims that Avionica’s connectivity systems infringe on a 2001 patent by Teledyne for “wireless transmission of aircraft performance data, from an aircraft to the ground once an aircraft has landed.” Teledyne builds Ground Link, a competing system. Avionica denies the allegations and has asked for a jury trial. Absent a settlement, which could possibly involve Avionica paying a license fee to Teledyne for AviONS, the two will face off in court starting in May 2017.


As with any turbulence, Segredo navigates like a pilot, always keeping his sights on the destination. “I’m an engineer with no formal business training,” he says. “I need to cling to pretty simple tenets: If I take care of the customer, the customer will take care of me. Going on 25 years, that theory has always proven out.”

Emirates 777 sent flight data after crash landing




The crashed Emirates 777 wirelessly transmitted critical flight data within minutes of the accident to airline officials, the supplier of the data storage and transmission device says.


Raul Segredo, president and chief executive of Avionica, says the device spared safety investigators a search through the wreckage for the flight data recorder to recover immediate data about the last seconds of the landing sequence.


Miami-based Avionica supplies the miniQAR Mk III quick access recorder for the Emirates 777 fleet. The device receives flight information from the same databus that feeds the flight data recorder, Segredo says. The device is linked to a 3G wireless transmitter.


A key feature of Avionica’s design may have made the speedy data transmission possible despite the crash landing. Similar devices are programmed to begin transmitting data after the landing gear have touched the runway, Segredo says. The miniQAR MK III uses a proprietary algorithm that uses a mixture of parameters to determine when to activate the data transmission on the ground, he says. Emirates officials have confirmed to Avionica that the device worked on the crashed 777.


Flight EK521 crashed shortly after confirming landing clearance on runway 12L. The 777 came to a halt on its belly.