Cathay Pacific is Introducing Enhanced e-enablement on its Fleet

 

March 2017 | www.mromanagement.com |

Downloading maintenance data has become a big issue in recent years, driven by a number of factors: new-generation aircraft like the Airbus A350 and Boeing 787 are being delivered with e-enablement; the number of aircraft with connectivity is rapidly increasing (although mainly for passenger and cabin crew use); still providing a potential outlet for more technical data; and the greater awareness in the aviation industry of the use of big data has sparked interest in predictive maintenance to prevent failures and avoid AOGs.

 

When Cathay Pacific began to look for its second generation, e-enabled, airborne global connectivity programme, a benefit of the Avionica proposal was that it would take responsibility for the technology, hardware, software, and would provide support services for certification – the previous project involved five suppliers. In addition, the company offered small lightweight equipment, modularity and scalability.

 

Avionica’s solution for Cathay Pacific consists of four modules.

 

avCM 4G cellular device
The avCM 4G Wireless GSE Module includes a seven-band HSPA+ 4G Cell Module that transfers data on demand with worldwide coverage. The 4G transfer speed is up to 21mbps for upload and up to 5.76mbps for download. That means one hour of flight data can be downloaded in 30 seconds. The unit is easy to install, measuring 5.6cm x 2.4cm x 4.7cm and weighing 71g. This can be achieved with a universal installation kit, or with ARINC 404, or ARINC 600 tray adapters.

 

avSYNC

avSYNC is a secure, web-hosted Software as a Service (SaaS) that is hosted by Avionica on scalable, redundant servers in hardened server farms. Data is conveyed directly to and from aviONS and avRDC MAX (see below) over secure, encrypted Virtual Private Network tunnels, and transferred to or from any location with internet access. This is the bypass for the expensive ground segment, offering upload and download for a fixed cost per megabyte.

 

aviONS
The aviONS Onboard Network Server is the interface between the other components of the system, working via ARINC data links and a local Ethernet. It measures 18cm x 10.3cm x 6.6cm and weighs 1.36kg.

 

satLINK MAX
satLINK MAX provides up to four channels of Iridium satellite-based voice and data. It consists of two LRU modules. The data concentrator (avRDCMAX) is installed in the avionics bay, adjacent to the Communications Management Unit (CMU), Multifunction Control Display Unit (MCDU) and audio panel. The Iridium radio module (satLINK MAX) is installed in the fuselage crown area, adjacent to the antenna, minimising RF losses. The two devices are attached by a single Ethernet and power cable. This reduces the overall weight of the installation whilst maximising performance.

 

No additional controls, handsets, or displays are required as satLINK MAX integrates directly into the aircraft’s existing audio panel and is a plug-in replacement for the ARINC 741/761 Satellite Data Unit, providing dialling capability via the aircraft’s existing ARINC 739 MCDU or ACARS Interactive Display Unit (IDU). The same interfaces are used for data messaging, routable over the aircraft’s existing ARINC 724/758 MU/CMU.

 

Rob Saunders, Head of Engineering Cost Management & Business Improvement & Lean at Cathay Pacific, says the airline has had a clear design goal for its e-enabled solution for some years. This being full-time cost-effective global connectivity for flight and cabin crew operations. With a growing number of polar routes, Iridium was the obvious choice. Whilst the original solution met the design goal, hardware obsolescence risks and increasing certification costs drove a decision to review the project.

 

The outcome was that the design goal was still valid but cheaper, simplified solutions were becoming available in the market. As a result the Class 3 EFBs in the cockpit and cabin initiated in 2009 have been deactivated in favour of the new simpler, lighter and more cost-effective solution from Avionica. This new solution provides more capability than those of the OEMs that were previously available at that time – at a fraction of the cost. Saunders’ view is that this is an example of where capabilities in what was previously termed ‘Avionics’ are becoming available from domestic technology roots, the iPad being the game changer in this arena. He predicts that the industry will see more companies producing cost-effectivesolutions that challenge the high-cost culture of aviation equipment. IFE will be an interesting market to watch over the next five years.

 

Conversions
The current plan calls for the ‘first of type’ of each aircraft in the Cathay Pacific, Cathay Pacific Cargo and Cathay Dragon (formerly Dragonair) fleets (see table, page 50) to be completely modified and certified by May 2018. This will involve the complete Avionica package, including the satcom antenna, the avSYNC QAR download and avCM 4G cellular device. To accelerate business benefits, Cathay plans to install just the avSYNC QAR and avCM 4G on the rest of the fleet as this can be completed during a long layover, around 16 hours. This will upgrade the fleet to a common wireless QAR allowing data to be transmitted automatically whenever the aircraft is on the ground, without the need for an engineer to visit the aircraft and extract the information on media.

 

More importantly, the Avionica ONS will provide cabin wifi for on synchronisation of the ‘aircraft attached’ e-Cabin and Log book iPads and access to aircraft system data for ‘pilot attached’ EFBs. As Iridium connectivity is added to the system to provide an airborne data path, engineers will meet the aircraft ‘with a part, not a pen’ as they will have a full picture from the eLog before arrival. Saunders adds that the airline now has solid evidence of the benefits of airborne reporting from experience of the e-Log on the A350 fleet, which was e-enabled from birth.

 

Priority will be given to the long haul fleet, although he notes that some Cathay Dragon destinations in
mainland China have little in the way of technical support so remote connection will allow engineers recovering an aircraft to arrive with the correct parts and equipment.

 

Fitting the satcom antenna takes three days and breaches the pressure hull, so this work will be mostly planned alongside heavy maintenance visits. These will be carried out by HAECO Xiamen and the HAECO base team in Hong Kong. The simpler work will be done in Hong Kong by HAECO in shorter inputs. The airline has 22 Airbus A350-900s and 26 Airbus A350-1000s on order, with 11 -900s delivered to date. Further in the future, there are 21 Boeing 777-9X on order.

 

The A350s are fitted with an Airbus e-enabled system that meets the same design goal as Avionica but is not retrofittable. As a general point, Saunders says the newer aircraft such as the A350 and 787 are highly integrated but Cathay’s solution is to install the same software applications to provide data commonality with the rest of the fleet – this includes the Ultramain eTechLog, Arconics AeroDocs, as well as products from Fly Smart, Navtech and Cathay Pacific proprietary software. Another advantage of this installation is that it helps maintain Cross Crew Qualification for pilots and maintainers.

 

One aspect of airborne connectivity that has to be considered very carefully is the cost of the data itself.  The bandwidth for the operational network is still relatively narrow and expensive. The cost savings of using the information can easily be overtaken by the cost of getting the data in the first place.

 

Saunders says that it is frustrating to identify an opportunity that is not viable for this reason. Newer aircraft types have significant opportunities but the OEMs need to understand the data cost burden to the operator. Large volumes of engine data being downloaded automatically was not a welcome cost burden to Cathay on the introduction of its 747-8 Freighter fleet, he adds. Anthony Rios, Vice President of Sales at Miami-based Avionica, agrees, commenting that typical charges for the ground segment, not normally considered, are even higher.

 

One way to greatly reduce the cost would be a link from the operational data path to the cheaper data rates of the passenger connectivity system. Saunders accepts that there are security requirements but points out that data security is technically achievable, and it is only a matter of time before the industry addresses the factual issues rather that the anecdotal risk claims. Taking this into context, the level of data encryption requirements to downlink a cabin defect via satcom seem a little onerous when ACARS information providing aircraft position for the world’s fleet remains available to anyone with a downloadable app on a smartphone.

 

Having the Avionica server on the aircraft has opened up some interesting possibilities. The storage space could be used to hold a master tech log or troubleshoot for cabin problems. The latter is important, he says, and is a big part of the e-enablement programme. If there is a business class seat problem after take off, the cabin crew could take photos, send them to the maintenance control centre and receive advice on a fix, or they could consult the data on the server and perhaps get a video showing the reset procedure viewed on their company-issued personal device. The important point here is that the initial impact to a passenger could be avoided and the activity by the crew captured and downlinked to the next port for rectification on arrival. The reservations system could receive the information in case the seat needs to be blocked for sale on the next flight. Solving the problem in the air and advising that it worked out makes that seat available for sale again. Across the airline’s fleet, this type of process improvement avoids a considerable loss of revenue. This would also apply to aircraft faults if the problem is sent on ahead.

 

Saunders also suggests that algorithms for various onboard systems could be held in the server with frequent ‘dips’ into the QAR during a flight to see whether they are behaving as they should. This can be used for trending, such as APU fuel burn, or to measure the airflow in the environmental control system to check if filters need to be replaced. He says OEMs tend to have conservative maintenance intervals based on the ‘lowest common denominator’ airline, so more spare filters are held in store than necessary and may be replaced before they really need to be. Regular monitoring could extend the service interval. A more serious example is the case of a potential heavy landing. This requires careful assessment of a number of parameters, including the g-force encountered and aircraft altitude. This data has to be collected and sent to the OEM for analysis while the aircraft is grounded for several hours. Potentially, onboard analysis would provide a quick answer and release the aircraft to service earlier.

 

Aircraft fleets
Cathay Pacific fleet
Boeing 747-400 3
Boeing 777-200 5
Boeing 777-300 12
Boeing 777-300ER 53
Airbus A330-300 41
Airbus A340-300 4
Airbus A350-900 11
Boeing 747-8F 14
Boeing 747-400ERF 6
Boeing 747-400 BCF* 1
Total 150
Cathay Dragon fleet
Airbus A320 15
Airbus A321 8
Airbus A330-300 20
Total 43
Aircraft on order
Airbus A350-900 12
Airbus A350-1000 26
Boeing 777-9X 21
Total 59

(source: Cathay Pacific) * will not be converted used for trending, such as APU fuel burn, or to measure the airflow in the environmental control system to check if filters need to be replaced. He says OEMs tend to have conservative maintenance intervals based on the ‘lowest common denominator’ airline, so more spare filters are held in store than necessary and may be replaced before they really need to be. Regular monitoring could extend the service interval. A more serious example is the case of a potential heavy landing. This requires careful assessment of a number of parameters, including the g-force encountered and aircraft altitude. This data has to be collected and sent to the OEM for analysis while the aircraft is grounded for several hours. Potentially, onboard analysis would provide a quick answer and release the aircraft to service earlier.

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *